Главная >> Создание физических основ электроники XIX в. >> Создание электромагнитной теории
Создание электромагнитной теории
Создание электромагнитной теорииЭлектрические и магнитные свойства материи наблюдались с древнейших времен. Но до середины XVIII в. опыты с электричеством не носили последовательного характера и воспринимались как некая "игра природы".

Термин "электричество" впервые появился в 1600 г. в трудах В. Гильберта. Немецкий ученый О. Герике в период 1650-1672 гг. провел серию опытов по электричеству и магнетизму. Им были изготовлены первые электростатические генераторы и приборы для измерения статического электричества. В 1745 г. нидерландский ученый Н. Мушенбрук изобрел электрический конденсатор - "лейденскую банку". В середине XVIII в. важные опыты в области исследования атмосферного электричества были проведены Б. Франклином и Ш. Кулоном, а также русскими учеными М. Ломоносовым и Г. Рихманом.

В период становления классического естествознания разработка теории электричества носила эмпирический характер и шла по пути от исследования явлений к созданию теорий и их математическому обоснованию. Эта тенденция отразилась в исследованиях петербургского академика Ф.-У. Эпинуса. В работах 1759 г. он развил теорию, согласно которой электрические явления связаны с изменением количества электрических флюидов в теле по сравнению с его естественным состоянием.

Исследование электрических явлений постепенно утрачивало спонтанный характер и приобретало тенденцию к системному осмыслению. Исследования Эпинуса были продолжены и развиты Г. Кавендишем и Дж. Робайсоном. Однако основной закон электростатики открыл французский ученый Ш.-О. Кулон. Он доказал, что силы отталкивания и притяжения электрических зарядов обратно пропорциональны квадрату расстояний между ними. Использовав полученный закон обратных квадратов, Кулон в работах 1790-х гг. теоретически установил, что электрические заряды распределяются по поверхности проводника. Основы электростатики, заложенные Кулоном, имели важнейшее теоретическое и прикладное значение не только для развития теории электричества, но и для определения единицы электрического заряда через величины, использовавшиеся в механике.

Начало систематических исследований в области электричества во второй половине XVIII в. распространилось на биологию. В конце 1780-х гг. итальянский физиолог Л. Гальвани наблюдал сокращение мышц препарированной лягушки, если к ним приложены два разных металла, находящиеся в контакте. Он предположил, что биологическая субстанция является своеобразной "лейденской банкой" и выдвинул теорию так называемого "животного электричества". Эта идея поначалу увлекла его соотечественника А. Вольта. Но, продолжив эксперименты, Вольта пришел к иному выводу. Исключив физиологию и взяв за основу чисто физические явления, Вольта определил, что электричество возникает в результате контакта двух разнородных металлов. В 1797 г. он создал первый искусственный источник электрического тока - "вольтов столб" - медные и цинковые кружки с суконными прокладками между ними, пропитанными слабым раствором кислоты. Демонстрируя свое уважение к учителю, Вольта назвал свое изобретение "гальваническим элементом".

Гальвани вошел в историю как основоположник электрофизиологии, а Вольта - учения о электричестве. Оно вызвало огромный научный резонанс и повлекло за собой открытие других физических явлений: теплового действия тока, электрической дуги, электролиза. Гальванические элементы долгие годы были единственными источниками тока, с которых, по существу, началась электротехника.

Научные факты, указывающие на связь между магнетизмом и электричеством, начиная от притяжения пушинок янтарем и железных опилок магнитом до намагничивающего действия молнии, лейденской банки, непреложности закона обратных квадратов для электрических и магнитных явлений, пока не подтверждались вескими аргументами. Эта связь была найдена благодаря опытам датского физика Г.-Х. Эрстеда в 1820 г. Он обнаружил магнитные явления при протекании электрического тока в проводнике и первым высказал предположение о взаимосвязи между магнитными, электрическими и световыми явлениями. Заслуга Эрстеда в том, что, поняв важность своего открытия, он привлек к нему внимание ученых. С точки зрения дальнейшего развития электромагнитной теории, этот опыт стал необходимым звеном в цепи исследований.

Теория, объединяющая электрические и магнитные явления, была разработана в 1820-1826 гг. французским ученым А.-М. Ампером. Он же ввел термины "электростатика" и "электродинамика". Закон А.-М. Ампера определяет силу, возникающую при воздействии магнитного поля на участок проводника, через который протекает ток. Понятие "магнитного поля" тогда не было известно, оно появилось в работах Фарадея и Дж Максвелла. А.-М. Ампер вошел в историю как создатель теории электродинамики.

Используя гальванические элементы, немецкий физик Г.-С. Ом разработал в 1826 г. теорию электрических цепей. Сначала эта теория осталась незамеченной, но ее поддержали русские физики Б. Якоби и Э. Ленц, что помогло ее международному признанию. Законы Г.-С. Ома стали основой для всех электротехнических расчетов в будущем.

В ходе опытов Г.-Х. Эрстед и А.-М. Ампер установили наличие магнитных свойств у электрического тока. Необходимо было решить обратную задачу - исследовать влияние магнитных явлений на электрические, что реализовал М. Фарадей. В ходе опытов 1831 г. он открыл явление электромагнитной индукции и высказал предположение о существовании электромагнитных волн и электромагнитного поля. Вслед за ним, Э. Ленц сформулировал правило для определения направления индукционного тока, которое носит его имя. Открытие явления электромагнитной индукции относится к наиболее выдающимся открытиям XIX в., поскольку лежит в основе работы всех электродвигателей и электрогенераторов последующих времен.

Таким образом, в начальном периоде классического естествознания исследование электрических и магнитных явлений продвигалось на ощупь, благодаря ученым - одиночкам. Но к середине XVIII в. в области эмпирических знаний проявилась тенденция к системным исследованиям, подкрепленная количественным и качественным обобщением, получением математических зависимостей и, как следствие, появлением научного метода для создания электромагнитной теории.

 
Интересная статья? Поделись ей с другими:

Кто на сайте

Сейчас на сайте находятся:
 276 гостей 

Поиск по сайту

Новое о "Челюскин"

О. Шмидт – Арктика.

Полярный поход парохода "Челюскин" 1933/34 года привлек благодаря своей особой судьбе внимание многих миллионов. Эта...

О. Шмидт - Советская работа в Арктике.

Пользуясь лучшими достижениями международной науки, советские исследователи совершенно по-новому поставили задачу овладения Арктикой. Они ввели...

О. Шмидт - О «Челюскин».

В 1933 году было решено повторить поход "Сибирякова" - вновь выйти для сквозного прохода Северным...

О. Шмидт - Состав экспедиции и команды парохода «Челюскин».

Подбор людей - важнейшая часть организации любого дела. Особенно это относится к экспедициям, в которых...

О. Шмидт - Переход. Ленинград - Копенгаген – Мурманск.

Переход до Мурманска конечно не является экспедиционным плаванием, но для нас он имел тогда существенное...

О. Шмидт - Мурманск - мыс Челюскин.

В этой статье мы не будем касаться подробностей плавания, которые с навигационной стороны освещены в...

О. Шмидт - Море Лаптевых и Восточносибирское.

Первая половина нашего пути заканчивалась у мыса Челюскина. Она прошла очень трудно. Что нас ждет впереди,...

О. Шмидт - Колючинская губа.

От мыса Северного "Челюскин" шел уже девяти-десятибалльным льдом, т.е. льдом, покрывавшим от 90 до 100...

О. Шмидт - Берингов пролив.

Дрейф кружил наш пароход. Несколько раз мы проносились мимо мыса Сердце-Камень и снова отодвигались назад...

О. Шмидт - Зимовка.

"Литке" ушел. И все же мы еще не знали наверное, зазимуем мы или нет. Ветер...

О. Шмидт - На льдине.

13 февраля сильное сжатие прошло через место стоянки парохода, и "Челюскин" затонул на 68° северной...

О. Шмидт – Итоги экспедиции «Челюскин».

"Челюскин" не вышел в Тихий океан, а погиб, раздавленный льдами. Тем не менее проход до...

Новое по мировой истории

Масленица - история и традиции

Масленица - история и традиции

Масленица – один из немногих языческих праздников сохранившихся после принятия...

Разрушительные стихии над Европой в начале XXI века

Разрушительные стихии над Европой в начале XXI века

Ранее считалось, что стихийные бедствия, происходящие на земле, имеют исключительно...

Иштван I

Иштван I

В 973 году правитель Венгрии, князь Геза, отправил к германскому...

Великий поход Мао Цзэдуна

Льстивая пропаганда не скупилась для своего вождя на хвалебные эпитеты:...

Местное управление в России XVII века

Местное управление в России XVII века

По сравнению с центральным местное управление имело более сложную структуру....

Приказы в России XVII века

Приказы в России XVII века

Центральное управление осуществляли приказы (общегосударственные, дворцовые,...

Состав Думы в России XVII века

Состав Думы в России XVII века

Члены Думы, являясь советниками царя по вопросам законодательства, и сами...

Боярская дума и характер законотворческой деятельности в России XVII века…

Боярская дума и характер законотворческой деятельности в России XVII века

В правление царя Алексея Михайловича система государственного управления, формировавшаяся с...

Приказная система управления в России XVII века в оценке историков

Приказная система управления в России XVII века в оценке историков

Оценка историками сложившейся к концу XVII в. системы управления, прежде...

Преемственность двух эпох

Преемственность двух эпох

Начиная с работ Г.Ф. Миллера, в исторической науке утвердился взгляд...

  • Cheluskin_vo_ldah_2.jpg
  • Cheluskin_otplytie_iz_Leningrada.jpg
  • lager_SHmidta.jpg
  • photo.jpg
  • fig_1.jpg
  • Cheluskin_vo_ldah_1.jpg
  • esche_Lena.jpg
  • 135.jpg
  • Stroitelstvo_Cheliuskin(Lena).jpg
  • fig_2.jpg